
Raycasting and Constraints
Many games use a mouse or touch screen as the primary means of controlling objects;
whether it's by selecting, moving, creating, or destroying them.

If we want to implement such a system into our application, then we must find
a way to translate a mouse click (x-y coordinates on the screen) into a method of
detecting the first object underneath the pointer. The answer to this conundrum is
raycasting, which we will be exploring in this chapter.

Then, once we have a raycasting system in place, we will explore how we can
use it in combination with Bullet's constraint system to move objects with the
mouse cursor.

The power of raycasting
Raycasting is a technique that can be used for a variety of different tasks. A common
use is to find objects underneath the cursor from the camera's perspective. This is
typically referred to as picking. However, rays are also used in other tasks, such as
in shooter games to cast a line from the barrel of a weapon to where a bullet might
strike, which could be a wall or another player.

Another common usage of rays is to surround a player character with many rays
that point outwards from the object, that are used as feelers to detect if the player is
near other objects. For example, there could be a ray that points downwards from
the player's feet a short distance. If the ray collides with a physical object, then we
know that the player is touching the ground and telling us to play the appropriate
animation, or reset a flag that allows them to jump.

Raycasting and Constraints

[64]

Regardless, all of these concepts are built from the same basic idea; choose a
starting point, pick a direction to travel in (a ray), and move along that direction
(cast) until it collides with something. Let's create a basic picking ray function which
exactly does that.

Continue from here using the Chapter5.1_
Raycasting project files.

Picking rays
The GetPickingRay() function in the book's source code involves a large smattering
of 3D mathematics that are beyond the scope of this book. It should be enough to
know that it takes the x-y coordinates of a mouse click, and uses the camera's data
(its position, near plane, far plane, field of view, and aspect ratio) to calculate and
return a btVector3 in world coordinates that points forward from the camera in the
corresponding direction. If the camera moves, or we click somewhere else on the
screen, then we get a new btVector3 pointing forward from that position instead.
Armed with this function, we can add some simple code to create a new object
whenever we click on the right mouse button. This code can be found in the chapter's
source code, in the ShootBox() function. This function is called by the Mouse()
function anytime when the application detects that the right mouse button was clicked.

Recall that the Mouse() function was called by FreeGLUT
anytime a mouse button is clicked. It gives us the button, the
state (pressed or released), and the x-y coordinates of the click.

Chapter 5

[65]

Launch our application and try right-clicking on the mouse. It should create a
purple box and launch it towards the mouse cursor. The following screenshot
shows this in action:

We've jumped ahead a little with the setLinearVelocity() function. This
instruction is used to set the collision object's linear velocity. We'll learn more about
manipulating the rigid bodies through functions such as this in Chapter 6, Events,
Triggers, and Explosions.

Raycasting and Constraints

[66]

Destroying objects
So far, we've essentially created a starting point for a picking ray. It is not a true
raycast or picking ray until the ray travels forward in space and performs some type
of collision detection. To destroy an object in our scene, we'll need to use our picking
ray to perform a raycast and tell us the first rigid body with which it collides.

Raycasting in Bullet is handled through the btDynamicsWorld object's rayTest()
function. We provide the starting point (as a btVector3), the direction (btVector3),
and an object to store the raycast data inside, which should be one of two different
classes that inherit from RayResultCallback. The object could either be:

•	 ClosestRayResultCallback, which gives the closest collision that the ray
detected from the start location

•	 AllHitsRayResultCallback, which gives an array filled with all of the
collisions the ray detected

Which object we want to use will depend on whether we want only the closest hit,
or all of them. We will be using ClosestRayResultCallback, which contains useful
data and member functions for the collision point, such as:

•	 hasHit(), which returns a boolean value and tells us if there was a collision
between the ray and any physics object

•	 m_collisionObject, which is the btCollisionObject our ray hit
•	 m_hitPointWorld, which is the coordinate in world space where the ray

detected a collision

The Raycast() function in the book's source code takes a picking ray and an empty
output RayResult structure, uses it to create a ClosestRayResultCallback, and
then performs a raycast test. If the raycast was successful, the function fills out the
structure and returns true, allowing us to check the success or failure of the raycast
outside of this function.

Notice the special case to avoid picking static objects, such as our
ground plane. When we gave our ground plane a mass of zero,
Bullet automatically set the static flag for us, allowing us to check
for it at a later date.

Before we can destroy the picked rigid body we need to know what GameObject that
corresponds to. We will have to search through our list of game objects, comparing
their rigid bodies with the picked one, until we find it. Then, and only then, is it safe
to destroy it.

Chapter 5

[67]

Check the DestroyGameObject() function in the chapter's source code for details
of this process. This function searches through our list of objects hunting down
GameObject that corresponds to the given btRigidBody. It is then called during
the Keyboard() function, whenever we detect that the user pressed the D key.

Note that the mouse coordinates, x and y, are also passed
into functions such as Keyboard(). This greatly simplifies
our input handling, preventing us from having to store the
current mouse data locally.

Launch the application, hover the mouse cursor over an object, and press D on the
keyboard. Any objects beneath the cursor should now be instantly destroyed (with
the exception of the ground plane). The following are the screenshots before and
after destruction of the box on the left:

Constraints
We'll now explore Bullet's constraint feature. These objects limit the range of motion
of one object relative to another, giving us the power to create some very interesting
and unique gameplay situations.

Continue from here using the Chapter5.2_
Constraints project files.

Raycasting and Constraints

[68]

Understanding constraints
Constraints, in their most basic form, are the rules which limit the range of motion
of an object relative to some specific object or point in space. For example, think of
a desk chair. It is made up of multiple parts, but if we push the base of the chair, the
rest must move with it. The same happens if we push the top section; so even though
the chair is made of multiple pieces, they are constrained to one another by a handful
of rules.

Constraints can be used to also simulate the independent rotation of the desk
chair's top section relative to the base. The top section is able to rotate around an
axis without any dependence on what the bottom section is doing. This constraint
is simulated by hooking the top section to an invisible point, and only allowing
rotation around a single axis about that point.

Constraints can vary in how strongly they influence their target objects. A strong
constraint enforces its limitation on movement at all times as strongly as it can. So,
if two objects are connected by a very strong, rigid constraint, it is the equivalent of
being attached together by invisible and unbreakable glue. In other words, if one
object is moved one unit in space, then the other must move one unit in space to
follow it.

Weaker constraints are more like springs. Under the same scenario, the first object
might move one unit in space, but the second moves somewhat less, causing the
two objects to come closer together, or pushed further apart. In addition, the more
they are pushed away from their resting position, the harder the constraint pulls
them back; if we recall our Newtonian physics, this is much like how a simple
spring functions.

Picking up objects
A feature of most games is to allow the player to pick up and move the objects around
with the mouse cursor or touch screen (also useful for debugging and testing!). There
are several ways to achieve this, such as with forces, or updating the rigid body's
transform each iteration, but we would like to use a constraint to achieve this effect.

The idea is to use our existing raycasting functionality to detect which object was
selected and the exact point of a mouse click. We then create a new constraint at that
point and attach it to the selected object. Then, every time we move the mouse (while
the mouse button is still held down), we update the position of the constraint. The
expectation being that our selected object would move with the constraint, and keep
the same relative position until it is freed from its influence.

Chapter 5

[69]

There are a handful of different objects which Bullet provides in order to implement
the constraint system. We'll cover the btGenericDof6Constraint object, the
most generic of the available options (hence the name). Its purpose is to give us an
interface to limit the six degrees of freedom (Dof6 for short) of an object; these refer to
the three axes of both linear and angular motion. This constraint can either be used to
hook two rigid bodies together, or hook a single object to a single point in space.

Building a constraint
We've seen raycasting in action earlier in this chapter, so all we need
to cover is the creation, update, and destruction of the constraint itself.
CreatePickingConstraint() is a very large function, so we'll explore
some code snippets one step at a time:

 if (!Raycast(m_cameraPosition, GetPickingRay(x, y), output))
 return;

This instruction should look familiar, since we used it earlier in this chapter.
It performs a raycast and returns true if it finds anything, pushing the relevant
data into the output variable.

 m_pPickedBody->setActivationState(DISABLE_DEACTIVATION);

Here we're ensuring the picked object doesn't fall asleep while attached to our
constraint. We covered activation states back in Chapter 4, Object Management and
Debug Rendering and the last thing we want is our picked object to freeze in place
while we still have it selected!

 // get the hit position relative to the body we hit
 btVector3 localPivot = m_pPickedBody-
 >getCenterOfMassTransform().inverse() * output.hitPoint;

We mentioned earlier how we would create the constraint at the exact point of
the click, which is exactly what the previous calls do, except it does so in a rather
convoluted way.

Constraints must be defined in local space coordinates, for example, let's say we
have two objects positioned at (0,3,0) and (0,10,0) in world space coordinates.
But, from the first object's perspective, it is always positioned at (0,0,0) in its own
local space, regardless of where it is in world space. Also, as far as the first box is
concerned, the other box is positioned at (0,7,0) in its local space. Meanwhile, from
the second object's perspective, it is also positioned at (0,0,0) in its local space, and
the other box is located at (0,-7,0) in its local space.

Raycasting and Constraints

[70]

It's possible to obtain these values mathematically by multiplying the vector
representing a point in world space by the inverse of an object's transformation
matrix. Therefore in the preceding code, we multiply the hit point by the inverse
transform of the box's center of mass, giving us the hit point coordinates from the
box's local space perspective.

The previous mathematical calculation is a very important and
useful feature of matrices that is worth remembering for the future.

Next we create our constraint object:

btGeneric6DofConstraint* dof6 = new
 btGeneric6DofConstraint(*m_pPickedBody, pivot, true);

The constraint requires us to provide the body in question, the pivot point (again, in
local space coordinates), and a bool value. This boolean tells the constraint whether
to store various pieces of data relative to object A (the rigid body) or object B (the
constraint's pivot point in this case, but could also be a second rigid body). This
becomes important when using the constraint later.

dof6->setAngularLowerLimit(btVector3(0,0,0));
dof6->setAngularUpperLimit(btVector3(0,0,0));

Also, calling the setAngularUpperLimit() and setAngularLowerLimit()
functions with zero's btVector3s add a rotational limitation to the box while it is
attached to this constraint, preventing it from rotating.

m_pWorld->addConstraint(dof6,true);

Much like rigid bodies, it's not enough to create the object; we must also inform the
world of its existence, hence we call the addConstraint() function. The second
parameter disables the collisions between the two linked bodies. Since we don't have
two bodies in this constraint (we have a body and a pivot point), it would be wise to
tell Bullet to save itself some effort by setting the value to true. If we had two rigid
bodies connected via a weak constraint and were interested in having them collide,
we would want to set this value to false.

// define the 'strength' of our constraint (each axis)
float cfm = 0.5f;
dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,0);
dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,1);
dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,2);
dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,3);
dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,4);

Chapter 5

[71]

dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,5);
// define the 'error reduction' of our constraint (each axis)
float erp = 0.5f;
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,0);
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,1);
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,2);
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,3);
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,4);
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,5);

This is where things get a little weird. The setParam() function sets the value of
a number of different constraint variables, two of which are used in the preceding
code. It is called a total of twelve times, since there are three axes, two directions for
each axis (positive and negative), and two different types of variable to edit (3x2x2 =
12). The two aforementioned variables are CFM (Constraint Force Mixing) and ERP
(Error Reduction Parameter).

CFM is essentially a measure of the strength of the constraint. A value of 0 means a
perfectly rigid constraint, while increasing values make the constraint more spring
like, up to a value of 1 where it has no effect at all.

ERP represents the fraction of how much joint error will be used in the next
simulation step. Many constraints could be working in unison to create a complex
interaction (imagine a rope bridge, which can be simulated by a attaching a bunch of
springs connected together) and ERP is used to determine how much of the previous
data will affect the calculation of future data. This is a difficult concept to explain
in such a short space, but imagine that we have multiple constraints acting on the
same object, each forcing the others into breaking their own rules. ERP is then the
priority of this constraint relative to the others, and helps determine who has higher
importance during these types of complex constraint scenarios.

And there we have it. We detected the collision point, and then built our constraint.
That wasn't so bad, was it? The last snippet of code to look at is in the Motion()
function, the code which updates the position of the constraint while we're still
holding down the left mouse button.

// use another picking ray to get the target direction
btVector3 dir = GetPickingRay(x,y) - m_cameraPosition;
dir.normalize();
// use the same distance as when we originally picked the object
dir *= m_oldPickingDist;
btVector3 newPivot = m_cameraPosition + dir;
// set the position of the constraint
pickCon->getFrameOffsetA().setOrigin(newPivot);

Raycasting and Constraints

[72]

It was mentioned earlier that it was possible to get data from the constraint in a form
which is relative to one of the two objects involved in the constraint (called A and
B). We use the getFrameOffsetA() function to get the transform position of the
constraint relative to the first object, and then update it with the new value. This is
the equivalent to updating the position of the constraint's pivot point. Thus in the
next simulation step, the constraint will attempt to move the box to the new position
of the mouse, keeping the same distance from the camera as when it was first picked.

The last thing to mention is the RemovePickingConstraint() function, which
makes sure that we have an existing constraint before attempting to destroy it.
If so, we must remove it from the world, destroy the object in memory, nullify
the pointers. The re-enable the ability of the picked up object to go back to sleep.

In this section's application we can pick up one of our objects with the left mouse
button and move it around. The following screenshot shows that the first box has
been moved on top of the second box of to our mouse clicking constraint:

Try tweaking the bLimitAngularMotion, cfm, and erp
variables in CreatePickingConstraint() and observe
the effects they have on the picked object.

Chapter 5

[73]

Summary
We've witnessed the power of picking, raycasting, and constraints by adding some
mouse control to our application. This flexible system is used to create, move, and
destroy objects in the scene. This allows for some very creative gameplay mechanics,
animations, and effects, since many games rely on these mechanisms as an essential
component of gameplay, so these are all lessons to take forward when implementing
similar systems in your own projects.

In the next chapter, we'll add more game logic control to our application by adding
a collision event system, complete with volumes of space which act as triggers, and
manipulating our objects through various types of force.

